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Hard Labels

Figure 4: Shape selection. We compare one-hot encoding (hard
labels, left) for supervising the shape selection problem with soft
labels (right) which allow for multiple shape predictions at the
same time and are based on geometric similarity, specifically the
Euclidian distance between SDF shape representations.

3.2. Shape Selection

Instead of directly reconstructing shape representations
such as meshes, voxel grids or point clouds [7, 13, 36], our
method operates indirectly, by selecting shape exemplars.
More precisely, the network is trained to select for each
detection one shape exemplar z among a set of K shape
exemplars from a given shape database. This choice is mo-
tivated by our goal to reconstruct realistic scenes, since it
guarantees valid shapes from the object database unlike re-
cent reconstruction methods which can produce incomplete,
noisy or over-smoothed reconstructions. Similarly, the re-
cent work of Tatarchenko et al. [42] concludes that current
methods for single-view 3D reconstruction primarily work
because of recognizing the type of shape depicted in the
image, rather than truly recovering the geometric details
unique to that particular instance.

To reiterate, in this work, the shape estimation problem
is formulated as a shape selection problem which chooses
one shape exemplar ẑ from a given shape database Z of
K shape exemplars. After predicting an exemplar ẑ, an
explicit shape representation X (voxel-grid, point cloud,
CAD model etc.) can be chosen freely from the precom-
puted databases ZX (described next) depending on the task
or loss function at hand. As such, the presented model is
agnostic towards any particular shape representation.

Building the shape database Z . The presented shape
database is a set of representative shape exemplars selected
from a given set of CAD models. Once our shape database
is built, the full set of the original CAD models is no longer
required. We now describe how those exemplary shapes
are selected. First, the CAD models are transformed into
a canonical orientation, position and scale. Specifically,
all models are facing down the negative Z-axis, the cen-
troids are translated to the origin, and we apply anisotropic
scaling such that the models fit into the unit cube. Then,
for each object i, we compute the signed distance func-
tion (SDF) representation �

i of the corresponding CAD
model. After discretization, downsampling to 323 grids
and flattening to vectors, we cluster the objects using k-
Means++ [1] with k = 50, for each object class separately.

The total number K of shape exemplars in the database Z
is K = k ·C where C is the number of object types (chairs,
bottle, etc.). The objects appearing in the training images
are already annotated by their corresponding CAD model.
Hence, we can re-label each object with their nearest shape
exemplar z

k. Additionally, the shape database can be ex-
tended to store explicit shape representations such as SDFs
Z� = {�k}K

k=1, point clouds ZP = {Pk}K
k=1 or CAD mod-

els ZCAD = {CADk}K
k=1. In each case, the stored represen-

tation corresponds to the model that is closest to the cluster
center under the clustering metric (L2 distance over �).

Training the shape selection network module. One
straightforward approach consists in training a 1-of-K clas-
sifier. Specifically, for each object i in the input image, the
network predicts a vector ẑi 2 RK scoring it against each
of the K exemplar shapes in the shape database Z . We can
then place a cross-entropy loss CE(·, ·) on this output and
supervise it with the ground truth one-hot encoding of the
target shape zi 2 {0, 1}K (Fig. 4, left):
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�(ẑi)k

�
(3)

where M is the number of detections in the image, � is the
softmax function (c.f . next paragraph, where we use sig-
moid S instead), and z

i

k
is the k-th entry in vector zi. At

test time, the predicted shape exemplar ẑ
i is computed as

ẑ
i = argmax

k
(ẑi). This approach corresponds to the clus-

tering baseline presented by Tatarchenko et al. in [42].
The issue with this approach is that two objects {i, j}

that are geometrically similar (i.e. �
i ⇡ �

j) can have dis-
agreeing supervision signals {zi, zj}. This can have a nega-
tive impact on the network training, as the network is asked
to simultaneously predict a high value for one of the K

database shapes, while also predicting a low value for an-
other, very similar shape. Instead, we propose as alterna-
tive formulation a soft relaxation of the binary target la-
bels z 2 {0, 1}K which takes the geometric similarity of
shapes into account. Specifically, we allow to predict multi-
ple shape exemplars simultaneously, they are no longer mu-
tually exclusive as before.

Formally, we redefine the target labels z using a shape
similarity function d(·, ·) (Fig. 4, right) such that:
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where S is the sigmoid function and
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Figure 4: Shape selection. We compare one-hot encoding (hard
labels, left) for supervising the shape selection problem with soft
labels (right) which allow for multiple shape predictions at the
same time and are based on geometric similarity, specifically the
Euclidian distance between SDF shape representations.

3.2. Shape Selection

Instead of directly reconstructing shape representations
such as meshes, voxel grids or point clouds [7, 13, 36], our
method operates indirectly, by selecting shape exemplars.
More precisely, the network is trained to select for each
detection one shape exemplar z among a set of K shape
exemplars from a given shape database. This choice is mo-
tivated by our goal to reconstruct realistic scenes, since it
guarantees valid shapes from the object database unlike re-
cent reconstruction methods which can produce incomplete,
noisy or over-smoothed reconstructions. Similarly, the re-
cent work of Tatarchenko et al. [42] concludes that current
methods for single-view 3D reconstruction primarily work
because of recognizing the type of shape depicted in the
image, rather than truly recovering the geometric details
unique to that particular instance.

To reiterate, in this work, the shape estimation problem
is formulated as a shape selection problem which chooses
one shape exemplar ẑ from a given shape database Z of
K shape exemplars. After predicting an exemplar ẑ, an
explicit shape representation X (voxel-grid, point cloud,
CAD model etc.) can be chosen freely from the precom-
puted databases ZX (described next) depending on the task
or loss function at hand. As such, the presented model is
agnostic towards any particular shape representation.

Building the shape database Z . The presented shape
database is a set of representative shape exemplars selected
from a given set of CAD models. Once our shape database
is built, the full set of the original CAD models is no longer
required. We now describe how those exemplary shapes
are selected. First, the CAD models are transformed into
a canonical orientation, position and scale. Specifically,
all models are facing down the negative Z-axis, the cen-
troids are translated to the origin, and we apply anisotropic
scaling such that the models fit into the unit cube. Then,
for each object i, we compute the signed distance func-
tion (SDF) representation �

i of the corresponding CAD
model. After discretization, downsampling to 323 grids
and flattening to vectors, we cluster the objects using k-
Means++ [1] with k = 50, for each object class separately.

The total number K of shape exemplars in the database Z
is K = k ·C where C is the number of object types (chairs,
bottle, etc.). The objects appearing in the training images
are already annotated by their corresponding CAD model.
Hence, we can re-label each object with their nearest shape
exemplar z

k. Additionally, the shape database can be ex-
tended to store explicit shape representations such as SDFs
Z� = {�k}K

k=1, point clouds ZP = {Pk}K
k=1 or CAD mod-

els ZCAD = {CADk}K
k=1. In each case, the stored represen-

tation corresponds to the model that is closest to the cluster
center under the clustering metric (L2 distance over �).

Training the shape selection network module. One
straightforward approach consists in training a 1-of-K clas-
sifier. Specifically, for each object i in the input image, the
network predicts a vector ẑi 2 RK scoring it against each
of the K exemplar shapes in the shape database Z . We can
then place a cross-entropy loss CE(·, ·) on this output and
supervise it with the ground truth one-hot encoding of the
target shape zi 2 {0, 1}K (Fig. 4, left):
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where M is the number of detections in the image, � is the
softmax function (c.f . next paragraph, where we use sig-
moid S instead), and z

i

k
is the k-th entry in vector zi. At

test time, the predicted shape exemplar ẑ
i is computed as

ẑ
i = argmax

k
(ẑi). This approach corresponds to the clus-

tering baseline presented by Tatarchenko et al. in [42].
The issue with this approach is that two objects {i, j}

that are geometrically similar (i.e. �
i ⇡ �

j) can have dis-
agreeing supervision signals {zi, zj}. This can have a nega-
tive impact on the network training, as the network is asked
to simultaneously predict a high value for one of the K

database shapes, while also predicting a low value for an-
other, very similar shape. Instead, we propose as alterna-
tive formulation a soft relaxation of the binary target la-
bels z 2 {0, 1}K which takes the geometric similarity of
shapes into account. Specifically, we allow to predict multi-
ple shape exemplars simultaneously, they are no longer mu-
tually exclusive as before.

Formally, we redefine the target labels z using a shape
similarity function d(·, ·) (Fig. 4, right) such that:
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where S is the sigmoid function and

d(i, k) = [1 � k�i � �
kk2]+ (5)
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Abstract

We propose a method to detect and reconstruct multiple 3D objects 
from a single RGB image. The key idea is to optimize for detection, 
alignment and shape jointly over all objects in the RGB image, while 
focusing on realistic and physically plausible reconstructions. To this 
end, we propose a key-point detector that localizes objects as center 
points and directly predicts all multi-object properties, including 9-DoF 
bounding boxes and 3D shapes — all in a single forward pass. 

Task


Contributions

• Fully holistic multi-object 3D scene reconstruction based on CenterNet [1] 

in a single-stage network from a single input RGB image. 
• Our reconstruction is formulated as a shape-selection problem (1-of-K 

classification) implemented using our novel “soft target labels” relying on 
geometric similarities between exemplar 3D shapes. 

• Our collision loss encourages non-intersecting reconstructions and CAD 
representations guarantee physically plausible and realistic shapes. 

• We present a 9-DoF pose estimation study showing that jointly optimizing 
rotation and translation improves over individual optimization in our setup.

Model Results on synthetic images

Input: Single Image Output: 3D Reconstructions 
of Multiple Objects

Points2Objects

Representation-agnostic Shapes                      Collision Loss
9-DoF Bounding Box 3D mAP: @ 0.5 @ 0.25

LbinR + LoffR + Lt (as in [51]) 43.3 75.0
LM + Lt 44.8 77.0
LR + Lt 46.8 77.2
LRt (Eq. 7, ours) 48.6 77.2

Table 2: 3D bounding box estimation. We compare different rep-
resentations to estimate the rotation and translation of 3D bound-
ing boxes. The metric is mAP with IoU thresholds 0.5 and 0.25.

mIV Num. Collisions

L0 1168.8 4116 y

�60.5%L0 + Lcoll (ours) 794 1627

Table 3: Effect of the collision loss. We report the mean inter-
section volume (mIV) over all objects and scenes, and the total
number of collisions for our model with and without collision loss.

Shape Estimation Abs. 3D IoU: mean global

L0
z (Eq. 3) Hard-Labels (as in [42]) 32.2 40.3

Lz (Eq. 4) Soft-Labels (ours) 36.4 44.7

Table 4: Soft vs. hard labels. Shape reconstruction quality in
terms of intersection-over-union (IoU) on a 1283 voxel grid.

mean intersecting volume (mIV) between colliding objects
and the total number of collisions. We report both metrics in
Tab. 3 on the validation split of ShapeNet-triplets. Our col-
lision loss substantially decreases the intersecting volume
and reduces the number of collisions by 60.5%.

How do soft- and hard-labels affect shape estimation?
In Sec. 3.2, we present two approaches to select shape ex-
emplars from the database Z . The first one optimizes L0

z
(Eq. 3) using hard-labels, i.e. one-hot encoding of target la-
bels z, as done in [42]. The second approach Lz (Eq. 4) re-
lies on soft-labels taking into consideration geometric sim-
ilarity between objects, therefore allowing to predict multi-
ple plausible shapes instead of forcing the network to make
a hard decision on one particular shape. Using the eval-
uation methodology from [36], we evaluate shape recon-
struction as intersection-over-union (IoU) on a 1283 voxel
grid (Tab. 4). We report both mean IoU over all classes and
class-agnostic global IoU. Our shape-selection mechanism
using soft-labels significantly improves shape prediction by
+4.2 mIoU over the hard-labels baseline [42].

Comparison to CoReNet on their datasets and Pix3D
First, we compare our reconstructions to CoReNet [36] on
their ShapeNet-pairs and ShapeNet-triplets datasets. Given
an image, [36] predicts a dense 1283 voxel grid. Each voxel
is either empty or assigned to an object-class, trained with
the focal loss (m8) 1� or the IoU loss (m9) 2�, see Tab. 1.
Our method reaches a higher relative 3D IoU (59.5 vs. 43.9)
but does not quite match CoReNet’s absolute 3D IoU (36.4
vs. 43.9). The relative score takes the maximum possible

Method Train Test 3D mIoU

CoReNet [36] triplets pairs �
CoReNet [36] triplets triplets 43.9 y

�22.3%CoReNet [36] pairs triplets 34.1

Points2Objects (Ours) triplets pairs 36.2
Points2Objects (Ours) triplets triplets 36.4 y

�10.1%Points2Objects (Ours) pairs triplets 32.7

Table 5: Generalization to varying object types and cardinality.

score into account, i.e. as our model is supervised with clus-
tered shapes (from the shape database Z) it can only be
as good as this supervision. The oracle 5� indicates this
best possible score for our model, using the ground truth
9-DoF bounding box and the ground truth shapes from Z
used to supervise our model. We also perform Procrustes
alignment 4� to the ground truth to abstract from 9-DoF es-
timation errors (48% vs. 36%).

Next, we analyze the generalization capabilities of both
models under varying number of objects and class-type
combinations (Tab. 5). We train on ShapeNet-pairs and
evaluate on ShapeNet-triplets, and vice-versa. Our model
generalizes well when trained on triplets and evaluated on
pairs (36.41 vs. 36.21). Both CoReNet and ours experience
performance drops when trained on pairs and evaluated on
triplets, but we lose less than CoReNet (-10% vs.-22%).

Finally, we compare to CoReNet quantitatively on Pix3D
in the same setting as [36]. We report mIoU over all 9
classes and splits S1, S2 as defined by [10]. On S1, we ob-
tain 34.1% (vs. 33.3%). On S2, 26.3% (vs. 23.6%). Thus,
our approach improves over CoReNet on real images.

5. Conclusion
We have presented an end-to-end trainable model for re-

alistic and joint 3D multi object reconstruction from a single
input RGB image. Specifically, we extend the CenterNet
paradigm to coherently predict multiple 3D objects. Objects
are first detected as points, then reconstructed by jointly es-
timating 9-DoF object bounding boxes and 3D shape exem-
plars from a given shape database. Our model is agnostic to
shape representations and flexible towards changing them
in the shape database.We further aim towards realistic and
physically plausible reconstructed scenes. To that end, the
model encourages collision-free reconstructions and uses
CAD models as shape representations to guarantee valid
and realistic object shapes.

Acknowledgments: We thank Sergi Caelles, Ste-
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sions, Jonas Schult and Theodora Kontogianni for feedback
on the paper and contributions to the supplementary.
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Evaluation


Losses

Pix3D [4] Single object dataset 
Casual photos from mobile phone 
Generalization from synthetic to real data
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Estimating 9-DoF Poses - Study
Effect of collision loss

9-DoF Bounding Box 3D mAP: @ 0.5 @ 0.25

LbinR + LoffR + Lt (as in [1]) 43.3 75.0
LM + Lt 44.8 77.0
LR + Lt 46.8 77.2
LRt (ours) 48.6 77.2

Table 2: 3D bounding box estimation. We compare different rep-
resentations to estimate the rotation and translation of 3D bound-
ing boxes. The metric is mAP with IoU thresholds 0.5 and 0.25.

mIV Num. Collisions

L0 1168.8 4116 y
�60.5%L0 + Lcoll (ours) 794 1627

Table 3: Effect of the collision loss. We report the mean inter-
section volume (mIV) over all objects and scenes, and the total
number of collisions for our model with and without collision loss.

Shape Estimation Abs. 3D IoU: mean global

L0
z (Eq. 3) Hard-Labels (as in [42]) 32.2 40.3

Lz (Eq. 4) Soft-Labels (ours) 36.4 44.7

Table 4: Soft vs. hard labels. Shape reconstruction quality in
terms of intersection-over-union (IoU) on a 1283 voxel grid.

mean intersecting volume (mIV) between colliding objects
and the total number of collisions. We report both metrics in
Tab. 3 on the validation split of ShapeNet-triplets. Our col-
lision loss substantially decreases the intersecting volume
and reduces the number of collisions by 60.5%.

How do soft- and hard-labels affect shape estimation?
In Sec. 3.2, we present two approaches to select shape ex-
emplars from the database Z . The first one optimizes L0

z
(Eq. 3) using hard-labels, i.e. one-hot encoding of target la-
bels z, as done in [42]. The second approach Lz (Eq. 4) re-
lies on soft-labels taking into consideration geometric sim-
ilarity between objects, therefore allowing to predict multi-
ple plausible shapes instead of forcing the network to make
a hard decision on one particular shape. Using the eval-
uation methodology from [36], we evaluate shape recon-
struction as intersection-over-union (IoU) on a 1283 voxel
grid (Tab. 4). We report both mean IoU over all classes and
class-agnostic global IoU. Our shape-selection mechanism
using soft-labels significantly improves shape prediction by
+4.2 mIoU over the hard-labels baseline [42].

Comparison to CoReNet on their datasets and Pix3D
First, we compare our reconstructions to CoReNet [36] on
their ShapeNet-pairs and ShapeNet-triplets datasets. Given
an image, [36] predicts a dense 1283 voxel grid. Each voxel
is either empty or assigned to an object-class, trained with
the focal loss (m8) 1� or the IoU loss (m9) 2�, see Tab. 1.
Our method reaches a higher relative 3D IoU (59.5 vs. 43.9)
but does not quite match CoReNet’s absolute 3D IoU (36.4
vs. 43.9). The relative score takes the maximum possible

Method Train Test 3D mIoU

CoReNet [36] triplets pairs �
CoReNet [36] triplets triplets 43.9 y

�22.3%CoReNet [36] pairs triplets 34.1

Points2Objects (Ours) triplets pairs 36.2
Points2Objects (Ours) triplets triplets 36.4 y

�10.1%Points2Objects (Ours) pairs triplets 32.7

Table 5: Generalization to varying object types and cardinality.

score into account, i.e. as our model is supervised with clus-
tered shapes (from the shape database Z) it can only be
as good as this supervision. The oracle 5� indicates this
best possible score for our model, using the ground truth
9-DoF bounding box and the ground truth shapes from Z
used to supervise our model. We also perform Procrustes
alignment 4� to the ground truth to abstract from 9-DoF es-
timation errors (48% vs. 36%).

Next, we analyze the generalization capabilities of both
models under varying number of objects and class-type
combinations (Tab. 5). We train on ShapeNet-pairs and
evaluate on ShapeNet-triplets, and vice-versa. Our model
generalizes well when trained on triplets and evaluated on
pairs (36.41 vs. 36.21). Both CoReNet and ours experience
performance drops when trained on pairs and evaluated on
triplets, but we lose less than CoReNet (-10% vs.-22%).

Finally, we compare to CoReNet quantitatively on Pix3D
in the same setting as [36]. We report mIoU over all 9
classes and splits S1, S2 as defined by [10]. On S1, we ob-
tain 34.1% (vs. 33.3%). On S2, 26.3% (vs. 23.6%). Thus,
our approach improves over CoReNet on real images.

5. Conclusion
We have presented an end-to-end trainable model for re-

alistic and joint 3D multi object reconstruction from a single
input RGB image. Specifically, we extend the CenterNet
paradigm to coherently predict multiple 3D objects. Objects
are first detected as points, then reconstructed by jointly es-
timating 9-DoF object bounding boxes and 3D shape exem-
plars from a given shape database. Our model is agnostic to
shape representations and flexible towards changing them
in the shape database.We further aim towards realistic and
physically plausible reconstructed scenes. To that end, the
model encourages collision-free reconstructions and uses
CAD models as shape representations to guarantee valid
and realistic object shapes.
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Input Image CoReNet [3] Point2Objects (ours)

9-DoF Bounding Box 3D mAP: @ 0.5 @ 0.25

LbinR + LoffR + Lt (as in [51]) 43.3 75.0
LM + Lt 44.8 77.0
LR + Lt 46.8 77.2
LRt (Eq. 7, ours) 48.6 77.2

Table 2: 3D bounding box estimation. We compare different rep-
resentations to estimate the rotation and translation of 3D bound-
ing boxes. The metric is mAP with IoU thresholds 0.5 and 0.25.

mIV Num. Collisions

L0 1168.8 4116 y

�60.5%L0 + Lcoll (ours) 794 1627

Table 3: Effect of the collision loss. We report the mean inter-
section volume (mIV) over all objects and scenes, and the total
number of collisions for our model with and without collision loss.

Shape Estimation Abs. 3D IoU: mean global

L0
z Hard-Labels (as in [2]) 32.2 40.3

Lz Soft-Labels (ours) 36.4 44.7

Table 4: Soft vs. hard labels. Shape reconstruction quality in
terms of intersection-over-union (IoU) on a 1283 voxel grid.

mean intersecting volume (mIV) between colliding objects
and the total number of collisions. We report both metrics in
Tab. 3 on the validation split of ShapeNet-triplets. Our col-
lision loss substantially decreases the intersecting volume
and reduces the number of collisions by 60.5%.

How do soft- and hard-labels affect shape estimation?
In Sec. 3.2, we present two approaches to select shape ex-
emplars from the database Z . The first one optimizes L0

z
(Eq. 3) using hard-labels, i.e. one-hot encoding of target la-
bels z, as done in [42]. The second approach Lz (Eq. 4) re-
lies on soft-labels taking into consideration geometric sim-
ilarity between objects, therefore allowing to predict multi-
ple plausible shapes instead of forcing the network to make
a hard decision on one particular shape. Using the eval-
uation methodology from [36], we evaluate shape recon-
struction as intersection-over-union (IoU) on a 1283 voxel
grid (Tab. 4). We report both mean IoU over all classes and
class-agnostic global IoU. Our shape-selection mechanism
using soft-labels significantly improves shape prediction by
+4.2 mIoU over the hard-labels baseline [42].

Comparison to CoReNet on their datasets and Pix3D
First, we compare our reconstructions to CoReNet [36] on
their ShapeNet-pairs and ShapeNet-triplets datasets. Given
an image, [36] predicts a dense 1283 voxel grid. Each voxel
is either empty or assigned to an object-class, trained with
the focal loss (m8) 1� or the IoU loss (m9) 2�, see Tab. 1.
Our method reaches a higher relative 3D IoU (59.5 vs. 43.9)
but does not quite match CoReNet’s absolute 3D IoU (36.4
vs. 43.9). The relative score takes the maximum possible

Method Train Test 3D mIoU

CoReNet [36] triplets pairs �
CoReNet [36] triplets triplets 43.9 y

�22.3%CoReNet [36] pairs triplets 34.1

Points2Objects (Ours) triplets pairs 36.2
Points2Objects (Ours) triplets triplets 36.4 y

�10.1%Points2Objects (Ours) pairs triplets 32.7

Table 5: Generalization to varying object types and cardinality.

score into account, i.e. as our model is supervised with clus-
tered shapes (from the shape database Z) it can only be
as good as this supervision. The oracle 5� indicates this
best possible score for our model, using the ground truth
9-DoF bounding box and the ground truth shapes from Z
used to supervise our model. We also perform Procrustes
alignment 4� to the ground truth to abstract from 9-DoF es-
timation errors (48% vs. 36%).

Next, we analyze the generalization capabilities of both
models under varying number of objects and class-type
combinations (Tab. 5). We train on ShapeNet-pairs and
evaluate on ShapeNet-triplets, and vice-versa. Our model
generalizes well when trained on triplets and evaluated on
pairs (36.41 vs. 36.21). Both CoReNet and ours experience
performance drops when trained on pairs and evaluated on
triplets, but we lose less than CoReNet (-10% vs.-22%).

Finally, we compare to CoReNet quantitatively on Pix3D
in the same setting as [36]. We report mIoU over all 9
classes and splits S1, S2 as defined by [10]. On S1, we ob-
tain 34.1% (vs. 33.3%). On S2, 26.3% (vs. 23.6%). Thus,
our approach improves over CoReNet on real images.

5. Conclusion
We have presented an end-to-end trainable model for re-

alistic and joint 3D multi object reconstruction from a single
input RGB image. Specifically, we extend the CenterNet
paradigm to coherently predict multiple 3D objects. Objects
are first detected as points, then reconstructed by jointly es-
timating 9-DoF object bounding boxes and 3D shape exem-
plars from a given shape database. Our model is agnostic to
shape representations and flexible towards changing them
in the shape database.We further aim towards realistic and
physically plausible reconstructed scenes. To that end, the
model encourages collision-free reconstructions and uses
CAD models as shape representations to guarantee valid
and realistic object shapes.
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KeyPoint Loss

Without collision loss 
With collision loss

(directly regress rotation matrix M)

Splits                S1              S2 

CoReNet [3]                33.3%          23.6% 

Points2Objects (ours)     34.1%         26.3%

Results on real images


