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ABSTRACT

Large visual-language models (VLMs), like CLIP, enable open-set image seg-
mentation to segment arbitrary concepts from an image in a zero-shot manner.
This goes beyond the traditional closed-set assumption, i.e., where models can
only segment classes from a pre-defined training set. More recently, first works
on open-set segmentation in 3D scenes have appeared in the literature. These
methods are heavily influenced by closed-set 3D convolutional approaches that
process point clouds or polygon meshes. However, these 3D scene representa-
tions do not align well with the image-based nature of the visual-language mod-
els. Indeed, point cloud and 3D meshes typically have a lower resolution than
images and the reconstructed 3D scene geometry might not project well to the
underlying 2D image sequences used to compute pixel-aligned CLIP features.
To address these challenges, we propose OpenNeRF which naturally operates on
posed images and directly encodes the VLM features within the NeRF. This is
similar in spirit to LERF, however our work shows that using pixel-wise VLM
features (instead of global CLIP features) results in an overall less complex ar-
chitecture without the need for additional DINO regularization. Our OpenNeRF
further leverages NeRF’s ability to render novel views and extract open-set VLM
features from areas that are not well observed in the initial posed images. For 3D
point cloud segmentation on the Replica dataset, OpenNeRF outperforms recent
open-vocabulary methods such as LERF and OpenScene by at least +4.9 mloU.

1 INTRODUCTION

3D semantic segmentation of a scene is the task of estimating, for each 3D point of a scene, the
category that it belongs to. Being able to accurately estimate the scene semantics enables numer-
ous applications, including augmented reality, robotic perception (Zhi et al., 2021) and autonomous
driving (Kundu et al., 2022), since they all require having a fine-grained understanding of the envi-
ronment. While the domain of 3D scene segmentation has recently made a lot of progress (Nekrasov
et al., 2021; Schult et al., 2023; Choy et al., 2019; Thomas et al., 2019; Qi et al., 2017), these meth-
ods are exclusively trained in a fully supervised manner on (closed-)sets of semantic categories,
rendering them impractical for many real world applications as the models lack the flexibility to
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Figure 1: Open-vocabulary 3D semantic segmentation on point clouds. Compared to LERF (Kerr et al., 2023),
the segmentation masks of OpenNeRF are more accurate and better localized, while achieving more fine-
grained classification than OpenScene (Peng et al., 2023). Zero-shot results on Replica (Straub et al., 2019).
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Figure 2: We propose OpenNeRF, an approach for open-set 3D scene understanding based on neural radiance
fields. Arbitrary concepts can be queried from our representation (left). As the original camera trajectory (blue,
middle) might not capture all interesting scene details, we use NeRFs ability to render novel views (right) and
propose a mechanism to obtain relevant novel camera poses (yellow, middle) that focus on scene details from
which we can extract additional open-scene features improving the overall open-set scene representation.

continuously adapt to new concepts or semantic classes (Dai et al., 2017a; Armeni et al., 2017,
Ramakrishnan et al., 2021; Baruch et al., 2021; Straub et al., 2019). Therefore, in this work we
aim at tackling the problem of open-set 3D scene segmentation. The main idea of open-set scene
segmentation is that arbitrary concepts can be segmented, independent of any pre-defined closed set
of classes. Specifically, given an arbitrary query — for example, a textual description or an image of
an object — the goal is to segment those parts in the 3D scene that are described by the query. Such
general unconstrained functionality can be crucial for helping robots interact with previously unseen
environments, or applications on AR/VR devices in complex indoor scenes, especially for queries
where annotated training labels are scarce or not available at all (Ahn et al., 2022).

Vision-language models (VLMs), such as CLIP (Wang et al., 2022) or ALIGN (Jia et al., 2021), have
shown impressive performance on open-set image classification. Trained on internet-scale image-
caption pairs, they learn a joint embedding mapping text and image inputs to the same (or different)
embedding vector depending on whether they describe similar (or different) concepts. More re-
cently, these powerful concepts were applied to dense pixel-level tasks, enabling open-set 2D image
segmentation (Ghiasi et al., 2022; Li et al., 2022a; Rao et al., 2022). Using VLMs in combination
with 3D point clouds is to date less explored. Similar to (Li et al., 2022a), Rozenberszki et al.
(2022) train a 3D convolutional network that predicts per-point CLIP features in a fully-supervised
manner using the CLIP-text encodings of the annotated class names. Such fine-tuning on densely
annotated datasets works well only on the classes labeled in the training set but does not generalize
well to novel unseen classes which limits open-set scene understanding. OpenScene (Peng et al.,
2023) recently proposed the first exciting results on open-vocabulary 3D scene understanding. In
line with (Rozenberszki et al., 2022), given a reconstructed 3D point cloud as input, a 3D convolu-
tional network predicts CLIP features for each point. However, unlike (Rozenberszki et al., 2022),
the model is supervised with projected CLIP-image features from posed 2D images, preserving the
generalization ability of the pixel-aligned visual-language image features. Similarly, LERF (Kerr
et al., 2023) embeds CLIP features at multiple scales into neural radiance fields. As in (Kobayashi
et al., 2022), LERF adds a branch to predict CLIP features for a given 3D location. Subsequently,
this enables rendering CLIP images, which is used to perform open-set semantic segmentation by
means of computing the similarity with the CLIP feature from encoded input text queries.

While OpenScene (Peng et al., 2023) and LERF (Kerr et al., 2023) demonstrate impressive capability
of semantically segmenting any given concept, they still suffer from several limitations. Exemplary,
Peng et al. (2023) fully operates on a given 3D scene reconstruction in the form of a polygon mesh
(or a point cloud sampled from the mesh surface) that usually stems from a recorded sequences
of RGB-D frames. This approach is naturally limited by the mesh resolution, thus constraining
the representation of smaller objects. On the other hand, LERF does not exhibit this limitation.
However, as it relies on the CLIP-image encoder, the resulting global VLM features are not well
localized in 3D space which leads to segmentation masks that a fairly inaccurate as CLIP can only
be computed on full images or crops. To compensate for this issue, LERF employs multi-resolution
patches for CLIP computation and further regularizes the rendered CLIP embeddings using DINO
features. While this can mitigate inaccurate masks to some extent, the overall method is rather
complex, yet achieving inferior masks for the task of open-set 3D semantic segmentation (see Fig. 1).
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In this work, we address the aforementioned limitations and propose OpenNeRF, a novel neural radi-
ance field (NeRF) (Mildenhall et al., 2020) based approach for open-set 3D scene segmentation. As
neural representation, NeRFs have inherently unlimited resolution and, more importantly, they also
provide an intuitive mechanism for rendering novel views from arbitrary camera positions. Thus, we
leverage this ability to extract additional visual-language features from novel views leading to im-
proved segmentation performance. One key challenge is to determine the relevant parts of the scene
requiring further attention. We identify the disagreement from multiple views as a powerful signal
and propose a probabilistic approach to generate novel view points. Second, we further propose
the direct distillation of pixel-aligned CLIP features from OpenSeg (Ghiasi et al., 2022) into our
neural radiance field. Compared to LERF, this not only increases the segmentation quality via de-
tailed and pixel-aligned CLIP features, it also significantly simplifies the underlying architecture as
it eradicates the need for multi-resolution patches and additional DINO-based regularization terms.

Our experiments show that NeRF-based representations, such as LERF and ourOpenNeREF, are bet-
ter suited for detecting small long-tail objects compared to mesh based representations used e.g., in
OpenScene. Further, we find that by incorporating pixel-aligned CLIP features from novel views,
our system improves over prior works despite exhibiting a simpler design. We identify the Replica
dataset as a promising candidate to evaluate open-set 3D semantic segmentation since, unlike Scan-
Net (Dai et al., 2017a) or Matterport (Ramakrishnan et al., 2021), it comes with very accurate mesh
reconstruction, per-point semantic labels as well as a long-tail class distribution (see Fig. 4).

In summary, the contributions of this work are as follows:

* We propose OpenNeRF, a novel approach for open-set 3D semantic scene understanding
based on distillation of pixel-aligned CLIP features into Neural Radiance Fields (NeRF).

* We propose a mechanism utilizing NeRF’s view synthesis capabilities for extracting addi-
tional visual-language features, leading to improved segmentation performance.

* We present the first evaluation protocol for the task of open-set 3D semantic segmentation,
comparing explicit-based (mesh / point cloud) and implicit-based (NeRF) methods.

* OpenNeRF significantly outperforms the current state-of-the-art for open-vocabulary 3D
segmentation with an +4.5 mloU gain on the Replica dataset.

2 RELATED WORK

2D Visual-Language Features. CLIP (Wang et al., 2022) is a large-scale visual-language model
trained on Internet-scale image-caption pairs. It consists of an image-encoder and a text-encoder that
map the respective inputs into a shared embedding space. Both encoders are trained in a contrastive
manner, such that they map images and captions to the same location in the embedding space if the
caption describes the image, and different locations in the opposite case. While the CLIP image-
encoder yields a single global feature vector per image, LSeg (Li et al., 2022a) extends this idea
and predicts pixel-level features which enables dense image segmentation tasks. Pixel-aligned CLIP
features are obtained via fine-tuning on a fully-annotated 2D semantic segmentation dataset. This
works well for the semantic classes present in the fully-annotated dataset, however, the pixel-aligned
features generalize less well to novel concepts outside of the training classes. OpenSeg (Ghiasi
et al., 2022) further improves on these aspects and proposes a class-agnostic fine-tuning to obtain
pixel-aligned features. OVSeg (Liang et al., 2023) is the latest development that proposes to fine-
tune a CLIP-like model on cropped objects. In this work, we use the pixel-wise features from
OpenSeg (Ghiasi et al., 2022) which enables a direct and fair comparison with the publicly available
models of OpenScene (Peng et al., 2023). Further, as also noted by (Peng et al., 2023), OpenSeg
improves over LSeg (Li et al., 2022a) on long-tail classes unseen during the training of LSeg.

Neural Radiance Fields. Since the introduction of Neural Radiance Fields (NeRFs) (Mildenhall
et al., 2020) for view synthesis, they have been adopted as scene representation for various tasks
ranging from 3D reconstruction (Oechsle et al., 2021; Wang et al., 2021; Yu et al., 2022; Yariv
et al., 2021) to semantic segmentation (Zhi et al., 2021) due their simplicity and state-of-the-art
performance. Next to impressive view synthesis results, NeRFs also offer a flexible way of fus-
ing 2D-based information in 3D. A series of works have explored this property in the context of
3D semantic scene understanding. In PanopticLifting (Siddiqui et al., 2023), predicted 2D seman-
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tic maps are utilized to obtain a 3D semantic and instance-segmented representation of the scene.
In (Kobayashi et al., 2022), 2D semantic features are incorporated and fused during the NeRF opti-
mization which are shown to allow for localized edits for input text prompts. Neural Feature Fusion
Fields (Tschernezki et al., 2022) investigates the NeRF-based fusion of 2D semantic features in the
context of 3D distillation and shows superior performance to 2D distillation. Finally, in LERF (Kerr
et al., 2023), NeRF-based 3D CLIP-feature fields are optimized via multi-scale 2D supervision to
obtain scene representations that allow for rendering response maps for long-tail open-vocabulary
queries. While all of the above achieve impressive 3D fusion results, we propose to investigate
NeRF-based feature fusing in the context of open-set 3D scene segmentation. This does not only
require to solve additional challenges, such as detecting relevant parts of the scene, but also enables
more rigorous evaluation and comparison to other fusion approaches.

3D Open-Set Scene Understanding While most approaches for 3D scene understanding utilize
3D supervision (Han et al., 2020; Hu et al., 2021; Li et al., 2022b), a recent line of works investi-
gates how 2D-based information can be lifted to 3D. In Semantic Abstraction (Ha & Song, 2022),
2D-based CLIP features are projected to 3D space via relevancy maps, which are extracted from
an input RGB-D stream. While achieving promising results, their 3D reasoning is coarse and thus
limited. Similarly, in ConceptFusion (Jatavallabhula et al., 2023) multi-modal 3D semantic repre-
sentations are inferred from an input RGB-D stream by leveraging 2D foundation models. They use
point clouds as 3D representation. ScanNet200 (Rozenberszki et al., 2022) uses CLIP to investigate
and develop a novel 200-class 3D semantic segmentation benchmark. Most similar to our approach
is OpenScene (Peng et al., 2023), which is the only existing method for open-set 3D semantic seg-
mentation of point clouds. Our method is also similar to LERF (Kerr et al., 2023) in terms of NeRF
representation but does not demonstrate results on 3D semantic segmentation. Further, our NeRF-
based scene representation offers high-quality novel view synthesis which we leverage to render
novel views of “interesting” scene parts towards improved segmentation performance.

3 METHOD

Given a set of posed RGB input images and corresponding pixel-aligned open-set image features,
we want to obtain a continuous volumetric 3D scene representation that can be queried for arbitrary
concepts. Our approach OpenNeRF enables open-set 3D scene understanding to address a wide
variety of different tasks, such as material and property understanding as well as object localization.
By means of leveraging the normalized cosine similarity between the encoded queries and the ren-
dered open-set features, we can explore multiple concepts (see Fig. 6). Alternatively, our approach
can by seen as a method for unsupervised zero-shot 3D semantic segmentation (Fig. 5) where we
assign to each point the semantic class with the highest similarity score.

3.1 OPEN-SET RADIANCE FIELDS

A radiance field is a continuous mapping that predicts a volume density o € [0, oc] and a RGB color
c € [0,1]? for a given input 3D point x € R? and viewing direction d € S?. Mildenhall et. al.
(Mildenhall et al., 2020) propose to parameterize this function with a neural network (NeRF) using
a multi-layer perceptron (MLP) where the weights of this MLP are optimized to fit a set of input
images of a scene. To enable higher-frequency modeling, the input 3D point as well as the viewing
direction are first passed to a predefined positional encoding (Mildenhall et al., 2020; Tancik et al.,
2020) before feeding them into the network. Building on this representation, we additionally assign
an open-set feature o € RP to each 3D point:

fo(x,d) — (o,c,0) (D

where 6 indicates the trainable network weights. Our representation is based on Mip-NeRF (Barron
et al., 2022) for appearance and density, while an additional MLP head models the open-set field. Es-
sentially, the rendering of color, density and the open-set features is conducted following volumetric
rendering via integrating over sampled point positions along a ray r (Levoy, 1990). We supervise the
open-set head with OpenSeg feature maps which provide localized per-pixel CLIP features. As a re-
sult, we do not require rendering CLIP features at multiple scales for training or multiple renderings
for each scale during inference as in LERF, leading to a simpler and more efficient representation.
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3.2 TRAINING OBJECTIVES

Appearance Loss. Following standard procedure, we optimize the appearance using the Euclidean
distance between the rendered color ¢, and the ground truth color ¢, over a set of sampled rays R:

1 .
Lrcp = @ZHCT_CAR @)
reR

Depth Loss. While our method is able to be trained from RGB data alone, we can also leverage
depth data if available. To this end, we supervise the density for those pixels where observed depth
information is available (see Table 2 for an analysis). We compute the mean depth from the densities
for each ray r and supervise them using the smooth L; (Huber) loss:
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Open-Set Loss. The open-set features are supervised via pre-computed 2D open-set feature maps
from OpenSeg. Similar to Peng et al. (2023), we maximize the cosine similarity using
O,
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Since the 2D open-set feature maps are generally not multi-view consistent, we do not backpropagate
from the open-set feature branch to the density branch (Siddiqui et al., 2023; Kobayashi et al., 2022).
Additionally, the 2D open-set maps from OpenSeg (Ghiasi et al., 2022) contain many artifacts near
the image border. Therefore, we do not sample rays within a margin of 10 pixels from the image
border during training. In summary, the total loss is defined as £ = Lrgp +Aopen*Lopen+Adepth* Ldepth-

3.3 RENDERING NOVEL VIEWS

A key advantage of NeRF-based representations is their ability to render photo-realistic novel views.
These rendered novel views can naturally be used to extract 2D open-set features. We would like to
use this ability to obtain improved open-set features for those parts of the scene where we have low
confidence in the existing open-set features. A key challenge, however, is to first identify the parts
of the scene that exhibit low confidence features and would thus benefit from rendering novel views.

Confidence Estimation. We identify the uncertainty u; € R over multiple projected open-set
features as a surprisingly strong signal. Specifically, starting with the original color images, we
compute open-set feature maps with OpenSeg. We then project each feature map onto a coarse 3D
scene point cloud obtained using an of-the-shelf 3D reconstruction method (Dai et al., 2017b) and
compute for each point i the mean j; € R” and covariance ¥; € RP*? over the per-point projected
features. As per-point uncertainty measure u; € R we compute the generalized variance (Wilks,
1932) defined as u; = det(X;). Those parts of the scene that exhibit a large uncertainty intuitively
correspond to areas where the open-set features from multiple viewpoints disagree on. They hence
deserve further investigation by means of re-rendering from more suitable viewpoints. In practice,
calculating the variance over a large number of high-dimensional features can be computational
challenging. For a memory efficient and numerically stable implementation, we rely on Welford’s
online algorithm (Donald et al., 1999) to compute the variance in a single pass.

To confirm that idea, we compute the correlation between the per-point uncertainty u; and the per-
point error €;. We define the per-point error ¢; as the Euclidean distance between the ground truth
open-set vector 0‘;’" (i.e., the CLIP text-encoding of the annotated class name) and the per-point
mean open-set vector j;. Indeed, measured over all Replica scenes, we observe a strong positive
correlation (7 = 0.653) between w; and ¢;. See Fig. 3 for an illustration.

Novel Camera View Selection. To generate novel camera poses we compute the 1ookat matrix
based on a target t € R3 and camera position p € R3. As targets t we select points with high
uncertainty (shown in red, Fig.3) based on their uncertainty u; if < u; with © ~ Uniform[0,1].
The camera position p is placed at a fixed small offset from the target position inside the scene with
added small random noise. Importantly, we sample the density of the NeRF at the selected camera
position to make sure the target is visible and does not collide with the scene geometry.
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Figure 3: Confidence Estimation. The error e; (left) correlates well with the estimated uncertainty u; (center).
Our mechanism for selecting novel view points is based on the estimated uncertainty. The plot (right) shows
the error-uncertainty correlation r for room0 of the Replica (Straub et al., 2019) dataset.

3.4 IMPLEMENTATION AND TRAINING DETAILS

Our model is implement in Jax based on Mip-NeRF (Barron et al., 2022). We train each NeRF
scene representation for 3000 iterations and the pixel-aligned opens-set features are computed using
OpenSeg (Ghiasi et al., 2022) resulting in 640 x 360 x D dimensional feature maps with D = 768.
For memory efficiency reasons, we convert them to float16 values. For querying, we use the pre-
trained CLIP text-encoder based on the ViT-144@336 model (Wang et al., 2022).

4 EXPERIMENTS

Datasets. We evaluate our approach on the Replica (Straub et al., 2019) dataset and show qualita-
tive results on scenes captured with the iPhone 3D Scanner App. Replica consists of high quality 3D
reconstructions of a variety of real-world indoor spaces with photo-realistic textures. Unlike other
popular 3D semantic segmentation datasets, such as S3DIS (Armeni et al., 2017), Scannet (Dai
et al., 2017a) or Matterport (Ramakrishnan et al., 2021), Replica is particularly well suited to eval-
uate open-set 3D scene understanding as it contains both a long-tail class distribution and carefully-
annotated ground-truth semantic labels, including very small objects such as switches and wall-
plugs. All experiments are evaluated on the commonly-used 8 scenes {office0-4, room0-2}
(Zhu et al., 2022; Peng et al., 2023; Zhi et al., 2021), using the camera poses and RGB-D frame se-
quences from Nice-SLAM (Zhu et al., 2022). Each RGB-D video sequence consists of 2000 frames
scaled to 640 x 360 pixels. For a fair comparison to OpenScene (Peng et al., 2023), we use only
every 10-th frame for training resulting in 200 posed RGB-D frames per scene.

Labels and Metrics. Overall, the 3D scene reconstructions are annotated with 51 different se-
mantic class categories. To enable a more detailed analysis of the experiments, we further split
the original categories into three equally sized subsets (head, common, tail) based on the number
of annotated points where each subset contains 17 classes (see Fig. 4). Note that the ground-truth
semantic labels, however, are only used for evaluation and not for optimizing the representations.
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Figure 4: Class Frequency Distribution of the Replica Dataset (Straub et al., 2019). We show the number
of point annotations for each category. The colors indicate the separation in head (blue), common (yellow) and
tail (green) classes from left to right in decreasing order. Note that the plot is shown at log-scale.
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All Head Common Tail
mloU mAcc mloU mAcc mloU mAcc mloU mAcc
LERF (Kerr et al., 2023) 10.5 25.8 19.2 28.1 10.1 31.2 2.3 17.3

OpenScene (Peng et al., 2023) (Distilled)  14.8 23.0 30.2 41.1 12.8 21.3 14 6.7
OpenScene (Peng et al., 2023) (Ensemble) 15.9 24.6 31.7 44.8 14.5 22.6 1.5 6.3

OpenNeRF (Ours) 204 31.7 35.4 46.2 20.1 31.3 58 17.6

Table 1: 3D Semantic Segmentation Scores on Replica (Straub et al., 2019). All results are obtained from
image resolution of 640 x 360 pixels, using the OpenSeg image encoder and the CLIP text encoder based
on ViT-144@336 and averaged over three runs. The reported LERF results are obtained using their original
implementation adapted for Replica following the same experimental setup as ours. OpenScene scores are
obtained with their provided pre-trained models. Note that the OpenScene models additionally profit from pre-
training on the large-scale Matterport (Ramakrishnan et al., 2021) dataset.

For evaluation purposes, we compute the 3D semantic segmentation performance on the provided
3D scene point clouds. In particular, we follow (Peng et al., 2023) and measure the accuracy of the
predicted semantic labels using the mean intersection over union (mloU) and mean accuracy (mAcc)
over all ground truth semantic classes and the head, common, tail subsets.

4.1 METHODS IN COMPARISON.

We compare our approach to the recently proposed OpenScene (Peng et al., 2023) and LERF (Kerr
et al., 2023). OpenScene is currently the only method reporting open-world 3D semantic segmenta-
tion scores. For LERF, we obtain 3D semantic segmentation masks by rendering for each frame all
relevancy maps over all evaluated semantic classes, then project these on the Replica point clouds
and assign the semantic class with the highest summed relevancy score. The OpenScene model is
a sparse 3D convolutional network that consumes a 3D point cloud and predicts for each point an
open-set feature. The model is trained on large-scale 3D point cloud datasets and supervised with
multi-view fused CLIP features. We compare with the two variations of their trained model, the 3D
distilled model (Distilled), which directly predicts per-point features, and the improved 2D-3D en-
semble model (Ensemble), which additionally combines the predicted per-point features with fused
pixel features. For a fair comparison, we follow their experimental setup, using the same pixel-
aligned visual-language feature extractor OpenSeg (Ghiasi et al., 2022). We use the public code and
the Matterport (Ramakrishnan et al., 2021) pre-trained model as suggested in the official repository’.
Note that OpenScene profits from additional training datasets not used by LERF or our OpenNeRF.

4.2 RESULTS ON 3D SEMANTIC SEGMENTATION

We show 3D semantic segmentation scores for all three subsets in Table 1. The 3D scene segmen-
tations are obtained by querying the 3D scene representations for each one of the annotated ground
truth semantic classes and assigning the class with the highest similarity score to each 3D point.
Querying is performed via correlation of the 3D point cloud features with the embedding from large
language models, specifically the CLIP-text encoder (ViT-L14@336). For OpenScene, we observe
a similar trend as reported in (Peng et al., 2023), where the Ensemble model improves over the
Distilled model (41.1 mloU).

Our results clearly improve over all baseline methods. We outperform LERF significantly while
possessing a simpler overall design. Compared to OpenScene, we achieve +4.5 mloU over all
classes, +3.7 (head), +5.6 (common) and +4.3 (tail) for each subset. While achieving improved
results on all classes, the smallest improvement can be found for the head classes. We attribute
this to the fact that OpenScene can benefit from the pre-training on large-scale 3D datasets in this
setting, enabling OpenScene to learn geometric priors of more popular classes (wall, ceiling, floor,
chair). However, it is interesting to note that our approach is able to detect semantic categories
that are not recognized at all by OpenScene (wall-plug, clock, tissue-paper, tablet, cloth). This is
an important aspect, as these are often exactly the classes that are most relevant for an autonomous
agent to interact with. Nevertheless, we also observe that numerous long-tail classes are not detected
at all by neither method. This highlights that open-scene segmentation is a difficult task especially
for long-tail classes, and shows that Replica is a challenging dataset for benchmarking.

"https://github.com/pengsongyou/openscene


https://github.com/pengsongyou/openscene

Published as a conference paper at ICLR 2024

® Wall © Ceiling @ Floor © Chair © Blinds @ Sofa ® Table ® Rug ® Window © Lamp @ Door * Pillow ® Bench ® TV Screen @ Cabinet © Pillar ® Blanket
@ TV Stand ® Cushion © Bin © Vent ©® Bed @ Stool @ Picture ® IndoorPlant ©* Desk ® Comforter ® Nightstand @ Shelf @ Vase @ PlantStand ® Basket ® Plate ® Monitor
@ Pipe @ Panel @ Desk Organizer ® Wall Plug ® Book ® Box ® Clock ® Sculpture © Tissue Paper ® Camera @ Tablet ® Pot ® Bottle ® Candle © Bow] @ Cloth ® Switch

Figure 5: Qualitative 3D Segmentation Results and Comparison with OpenScene (Peng et al., 2023). The
white dashed circles indicate the most noticeable differences between both approaches. Color and ground truth
are shown for reference only. Overall, our approach produces less noisy segmentation masks.
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Figure 6: Open-Set Scene Exploration. We visualize the normalized cosine similarity between the rendered
open-set scene features and the encoded text queries shown at the top-right of each example. Examples cover
a broad range of concepts. Going beyond specific objects (fop), we show scene properties (middle) and various
materials (bottom). Red is the highest relevancy, is middle, blue the lowest. Uncolored means the
similarity values are under 0.5.

Figure 7: In-the-wild Qualitative Results. We capture scenes using the iPhone 3D Scanner App, which
provides camera poses from on-board SLAM and query the reconstructed scenes with various search terms.
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4.3 ANALYSIS EXPERIMENTS

Sampling or rendering? Unlike OpenScene,

which directly predicts per-point features for LCEN mAcc

each point of a given 3D point cloud, our NeRF LERF (Kerr et al., 2023) 104 255
representation is more versatile. We can either OpenScene (Peng etal., 2023)  15.1  24.6
directly sample (1) the open-set features at a ( Sampled 165  29.1
specified 3D position from the NeRF represen- @ Render & Project 185  29.8
tation, or we can first render and then project (2 ® + depth supervision 194 3038
the open-set features onto the 3D point cloud @ + rendered novel views 204 317
for evaluation. When multiple open-set fea- Table 2: Analysis Experiments.

tures are projected to the same 3D point we take

the average over all points. Note that in both cases the 3D point cloud is only required for evaluation
and, in contrast to OpenScene, not necessary to obtain the NeRF-based scene representation, which
only relies on posed RGB(-D) images. Table 2 shows that the projection approach (2) improves
over sampling (1), which can be a direct consequence of the volumetric rendering within NeRFs that
accumulates multiple samples along each ray compared to a single sample at a given 3D point. Note
that (D) already improves over both OpenScene and LERF.

Impact of Depth Supervision. We further analyze the importance of depth as additional supervi-
sion signal. We implement an additional regression loss using the Huber (smooth-L;) loss between
the rendered average distance and the ground truth depth from each training pose. Table 2, 3
shows that depth supervision further improves the open-set feature field since the additional depth
supervision has a direct impact on the volumetric reconstruction quality.

Impact of Novel Views. Next, we analyze the contribution of the rendered novel views from the
generated view points using the approach described in Section 3.3. Table 2, (4) clearly demonstrates
the increased performance from rendered novel views. To disseminate whether the improvement
comes from the novel views or simply from additional views, we also compare with views generated
along the same camera trajectory as the original views which yielded the same results as 3). We
then placed additional random cameras into the scene volume to render novel views from random
positions. This results in a drastic performance drop (15.4 mloU) due to numerous frames that are
either inside the scene geometry or showing no meaningful context leading to deteriorated open-set
features. This demonstrates the benefit of our novel view synthesis approach presented in Sec. 3.3.

4.4 QUALITATIVE RESULTS FOR 3D SCENE SEGMENTATION AND OPEN-SET APPLICATIONS

In Fig. 1 and 5, we compare qualitative semantic segmentation results of LERF, OpenScene and our
OpenNeRF. The white dashed circles highlight the different predictions of each method. In contrast
to OpenScene, our approach is able to correctly segment the wall-plugs as well as the blanket on the
bed (Fig. 5, left). Our approach also properly detects the basket, the blinds and produces less noisy
results on the door (Fig. 5, right). The more interesting aspect of open-set scene representation is
that they can be queried for arbitrary concepts. In Fig. 6, we show the response of open-set queries.
For each example, we provide the text query as label. We observe that our method can be used to not
only query for classes, but also for concepts like object properties or material types. Finally, in Fig. 7
we show results on newly recorded “in-the-wild” sequences demonstrating the general applicability
of our approach to unseen scenarios.

5 CONCLUSION

We presented OpenNeRF, a NeRF-based scene representation for open set 3D semantic scene un-
derstanding. We demonstrate the potential of NeRFs in combination with pixel-aligned VLMs as
a powerful scene representation compared to explicit mesh representations, specifically on the task
of unsupervised 3D semantic segmentation. We further exploit the novel view synthesis capabilities
of NeRF to compute additional views of the scene from which we can extract open-set features.
This enables us to focus in greater detail on areas that remain underexplored. To that end, we pro-
posed a mechanism to identify regions for which novel views should be generated. In experiments
OpenNeRF outperforms the mesh-based OpenScene as well as the NeRF-based LERF.



Published as a conference paper at ICLR 2024

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as I Can, Not as I Say:
Grounding Language in Robotic Affordances. arXiv preprint arXiv:2204.01691, 2022.

Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2D-3D-Semantic Data for In-
door Scene Understanding. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-NeRF
360: Unbounded Anti-Aliased Neural Radiance Fields. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas Gebauer,
Brandon Joffe, Daniel Kurz, Arik Schwartz, et al. Arkitscenes—a diverse real-world dataset for 3d
indoor scene understanding using mobile rgb-d data. arXiv preprint arXiv:2111.08897, 2021.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D Spatio-Temporal ConvNets:
Minkowski Convolutional Neural Networks. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
NieBner. ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017a.

Angela Dai, Matthias NieBner, Michael Zollofer, Shahram Izadi, and Christian Theobalt. BundleFu-
sion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration.
ACM Transactions on Graphics 2017 (TOG), 2017b.

E Knuth Donald et al. The Art of Computer Programming. Sorting and searching, 1999.

Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scaling Open-Vocabulary Image Segmenta-
tion with Image-Level Labels. In European Conference on Computer Vision (ECCV), 2022.

Huy Ha and Shuran Song. Semantic Abstraction: Open-World 3D Scene Understanding from 2D
Vision-Language Models. In Conference on Robot Learning, 2022.

Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg: Occupancy-aware 3d instance segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2937-2946.
Computer Vision Foundation / IEEE, 2020.

Zeyu Hu, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun,
Hongbo Fu, and Chiew-Lan Tai. Vmnet: Voxel-mesh network for geodesic-aware 3d semantic
segmentation. In International Conference on Computer Vision (ICCV), pp. 15468-15478. IEEE,
2021.

Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang
Li, Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, et al. ConceptFusion: Open-Set
Multimodal 3D Mapping. arXiv preprint arXiv:2302.07241, 2023.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up Visual and Vision-Language Representation Learning
with Noisy Text Supervision. In International Conference on Machine Learning (ICML), 2021.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. LERF:
Language Embedded Radiance Fields. In International Conference on Computer Vision (ICCV),
2023.

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing NeRF for Editing via
Feature Field Distillation. Advances in Neural Information Processing Systems (NeurIPS), 2022.

10



Published as a conference paper at ICLR 2024

Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas J Guibas,
Andrea Tagliasacchi, Frank Dellaert, and Thomas Funkhouser. Panoptic neural fields: A seman-
tic object-aware neural scene representation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12871-12881, 2022.

Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics (TOG), 9(3):
245-261, 1990.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-Driven
Semantic Segmentation. /CLR, 2022a.

Jinke Li, Xiao He, Yang Wen, Yuan Gao, Xiaoqiang Cheng, and Dan Zhang. Panoptic-phnet: To-
wards real-time and high-precision lidar panoptic segmentation via clustering pseudo heatmap. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11799-11808.
IEEE, 2022b.

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang, Pe-
ter Vajda, and Diana Marculescu. Open-Vocabulary Semantic Segmentation with Mask-adapted
CLIP. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), European Conference on
Computer Vision (ECCV), 2020.

Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, and Francis Engelmann. Mix3d: Out-
of-Context Data Augmentation for 3D Scenes. In International Conference on 3D Vision (3DV),
2021.

Michael Oechsle, Songyou Peng, and Andreas Geiger. UNISURF: unifying neural implicit sur-
faces and radiance fields for multi-view reconstruction. In International Conference on Computer
Vision (ICCV), 2021.

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
Funkhouser, et al. OpenScene: 3D Scene Understanding with Open Vocabularies. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg,
John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al.
Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. arXiv
preprint arXiv:2109.08238, 2021.

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou,
and Jiwen Lu. DenseClip: Language-Guided Dense Prediction with Context-Aware Prompting.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

David Rozenberszki, Or Litany, and Angela Dai. Language-Grounded Indoor 3D Semantic Seg-
mentation in the Wild. In European Conference on Computer Vision (ECCV), 2022.

Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, and Bastian Leibe.
Mask3D: Mask Transformer for 3D Instance Segmentation. International Conference on Robotics
and Automation (ICRA), 2023.

Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulé, Norman Miiller, Matthias NieBner, Angela

Dai, and Peter Kontschieder. Panoptic Lifting for 3D Scene Understanding with Neural Fields.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

11



Published as a conference paper at ICLR 2024

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J.
Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian Budge,
Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler
Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M. Strasdat,
Renzo De Nardi, Michael Goesele, Steven Lovegrove, and Richard Newcombe. The Replica
Dataset: A Digital Replica of Indoor Spaces. arXiv preprint arXiv:1906.05797, 2019.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. In Hugo Larochelle,
Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems (NeurlPS), 2020.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois Goulette,
and Leonidas J Guibas. KPConv: Flexible and Deformable Convolution for Point Clouds. In
International Conference on Computer Vision (ICCV), 2019.

Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea Vedaldi. Neural Feature Fusion Fields:
3D distillation of self-supervised 2D image representations. In International Conference on 3D
Vision (3DV), 2022.

Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. CLIP-NeRF: Text-and-
Image Driven Manipulation of Neural Radiance Fields. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang.
Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. In
Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems (NeurIPS), 2021.

Samuel S Wilks. Certain Generalizations in the Analysis of Variance. Biometrika, 1932.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
In Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems (NeurIPS), 2021.

Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger. Monosdf: Ex-
ploring monocular geometric cues for neural implicit surface reconstruction. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place Scene Label-
ing and Understanding with Implicit Scene Representation. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021.

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui, Martin R
Oswald, and Marc Pollefeys. Nice-SLAM: Neural Implicit Scalable Encoding for SLAM. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as I Can, Not as I Say:
Grounding Language in Robotic Affordances. arXiv preprint arXiv:2204.01691, 2022.

Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2D-3D-Semantic Data for In-
door Scene Understanding. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-NeRF
360: Unbounded Anti-Aliased Neural Radiance Fields. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

12



Published as a conference paper at ICLR 2024

Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas Gebauer,
Brandon Joffe, Daniel Kurz, Arik Schwartz, et al. Arkitscenes—a diverse real-world dataset for 3d
indoor scene understanding using mobile rgb-d data. arXiv preprint arXiv:2111.08897, 2021.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D Spatio-Temporal ConvNets:
Minkowski Convolutional Neural Networks. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
NieBner. ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017a.

Angela Dai, Matthias NieBner, Michael Zollofer, Shahram Izadi, and Christian Theobalt. BundleFu-
sion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration.
ACM Transactions on Graphics 2017 (TOG), 2017b.

E Knuth Donald et al. The Art of Computer Programming. Sorting and searching, 1999.

Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scaling Open-Vocabulary Image Segmenta-
tion with Image-Level Labels. In European Conference on Computer Vision (ECCV), 2022.

Huy Ha and Shuran Song. Semantic Abstraction: Open-World 3D Scene Understanding from 2D
Vision-Language Models. In Conference on Robot Learning, 2022.

Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg: Occupancy-aware 3d instance segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2937-2946.
Computer Vision Foundation / IEEE, 2020.

Zeyu Hu, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun,
Hongbo Fu, and Chiew-Lan Tai. Vmnet: Voxel-mesh network for geodesic-aware 3d semantic
segmentation. In International Conference on Computer Vision (ICCV), pp. 15468-15478. IEEE,
2021.

Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen, Shuang
Li, Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari, et al. ConceptFusion: Open-Set
Multimodal 3D Mapping. arXiv preprint arXiv:2302.07241, 2023.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up Visual and Vision-Language Representation Learning
with Noisy Text Supervision. In International Conference on Machine Learning (ICML), 2021.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. LERF:
Language Embedded Radiance Fields. In International Conference on Computer Vision (ICCV),
2023.

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing NeRF for Editing via
Feature Field Distillation. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas J Guibas,
Andrea Tagliasacchi, Frank Dellaert, and Thomas Funkhouser. Panoptic neural fields: A seman-
tic object-aware neural scene representation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12871-12881, 2022.

Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics (TOG), 9(3):
245-261, 1990.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-Driven
Semantic Segmentation. /CLR, 2022a.

Jinke Li, Xiao He, Yang Wen, Yuan Gao, Xiaoqiang Cheng, and Dan Zhang. Panoptic-phnet: To-
wards real-time and high-precision lidar panoptic segmentation via clustering pseudo heatmap. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11799-11808.
IEEE, 2022b.

13



Published as a conference paper at ICLR 2024

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang, Pe-
ter Vajda, and Diana Marculescu. Open-Vocabulary Semantic Segmentation with Mask-adapted
CLIP. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), European Conference on
Computer Vision (ECCV), 2020.

Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, and Francis Engelmann. Mix3d: Out-
of-Context Data Augmentation for 3D Scenes. In International Conference on 3D Vision (3DV),
2021.

Michael Oechsle, Songyou Peng, and Andreas Geiger. UNISURF: unifying neural implicit sur-
faces and radiance fields for multi-view reconstruction. In International Conference on Computer
Vision (ICCV), 2021.

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
Funkhouser, et al. OpenScene: 3D Scene Understanding with Open Vocabularies. [EEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg,
John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al.
Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. arXiv
preprint arXiv:2109.08238, 2021.

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou,
and Jiwen Lu. DenseClip: Language-Guided Dense Prediction with Context-Aware Prompting.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

David Rozenberszki, Or Litany, and Angela Dai. Language-Grounded Indoor 3D Semantic Seg-
mentation in the Wild. In European Conference on Computer Vision (ECCV), 2022.

Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, and Bastian Leibe.
Mask3D: Mask Transformer for 3D Instance Segmentation. International Conference on Robotics
and Automation (ICRA), 2023.

Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Buld, Norman Miiller, Matthias NieBner, Angela
Dai, and Peter Kontschieder. Panoptic Lifting for 3D Scene Understanding with Neural Fields.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J.
Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian Budge,
Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler
Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M. Strasdat,
Renzo De Nardi, Michael Goesele, Steven Lovegrove, and Richard Newcombe. The Replica
Dataset: A Digital Replica of Indoor Spaces. arXiv preprint arXiv:1906.05797, 2019.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. In Hugo Larochelle,
Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois Goulette,

and Leonidas J Guibas. KPConv: Flexible and Deformable Convolution for Point Clouds. In
International Conference on Computer Vision (ICCV), 2019.

14



Published as a conference paper at ICLR 2024

Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea Vedaldi. Neural Feature Fusion Fields:
3D distillation of self-supervised 2D image representations. In International Conference on 3D
Vision (3DV), 2022.

Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. CLIP-NeRF: Text-and-
Image Driven Manipulation of Neural Radiance Fields. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang.
Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. In
Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems (NeurIPS), 2021.

Samuel S Wilks. Certain Generalizations in the Analysis of Variance. Biometrika, 1932.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
In Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems (NeurIPS), 2021.

Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger. Monosdf: Ex-
ploring monocular geometric cues for neural implicit surface reconstruction. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place Scene Label-
ing and Understanding with Implicit Scene Representation. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021.

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui, Martin R
Oswald, and Marc Pollefeys. Nice-SLAM: Neural Implicit Scalable Encoding for SLAM. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

15



	Introduction
	Related Work
	Method
	Open-Set Radiance Fields
	Training Objectives
	Rendering Novel Views
	Implementation and Training Details

	Experiments
	Methods in comparison.
	Results on 3D Semantic Segmentation
	Analysis Experiments
	Qualitative Results for 3D Scene Segmentation and Open-Set Applications

	Conclusion

