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Figure 1. LabelMaker3D bundles a collection of state-of-the-art segmentation models with different sets of predicted classes in a neural
field. LabelMaker3D can refine existing annotations and produce highly accurate 2D as well as 3D labels on ScanNet (left). At the same
time, it opens new possibilities to rapidly label large-scale datasets without human effort such as ARKitScenes (Right).

Abstract

Semantic annotations are indispensable to train or eval-
uate perception models, yet very costly to acquire. This
work introduces a fully automated 2D/3D labeling frame-
work that, without any human intervention, can generate
labels for RGB-D scans at equal (or better) level of accu-
racy than comparable manually annotated datasets such as
ScanNet. Our approach is based on an ensemble of state-
of-the-art segmentation models and 3D lifting through neu-
ral rendering. We demonstrate the effectiveness of our La-
belMaker3D pipeline by generating significantly better la-
bels for the ScanNet datasets and automatically labelling
the previously unlabeled ARKitScenes dataset. Code and
models are available at http://labelmaker3d.github.io.

1. Introduction

Semantic perception of the world around us is of central
importance for many computer vision applications [23, 28,
33]. Without semantic perception, meaningful interactions
with our environment are hardly possible. Thus, semantic
scene perception has been a long-standing problem in com-
puter vision and robotics [6, 12, 19, 23]. In recent years,
most solutions have converged towards using deep neural

networks. However, training and evaluating these networks
is hard. As recent works such as SAM [10], language-
based models [16, 20, 27], or InternImage [30] have shown,
huge quantities of training data, orders of magnitude larger
than any single existing research dataset, are necessary to
achieve good generalization. On the other hand, general-
ization is necessary because the distribution of the deploy-
ment environment - e.g., a particular user’s home, in which
a robotic application is to be deployed - is outside of the
distribution of existing annotated training datasets. To eval-
uate generalization in or adapt to specific deployment envi-
ronments, labeled data of these environments is necessary.
From both training and deployment perspectives, the avail-
ability of labeled data is therefore a key problem. Unfortu-
nately, the acquisition of this data is usually very expensive
as semantic ground-truth annotation is a time-consuming
manual process.

In this work, we particularly focus on 3D semantic seg-
mentation. The available scale of 3D semantic segmenta-
tion data such as ScanNet [8] or Matterport3D [4] is far
below the scale of 2D semantic segmentation datasets like
ADE20k [38], COCO-stuff [3], or others [7, 25, 31]. Even
tough tasks such as semantic segmentation or online seman-
tic reconstruction gain maturity and are crucial for inter-
active applications, there is even less semantic data with
paired camera trajectories and corresponding scene recon-
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structions. ScanNet [8] is by far the largest in this domain
with an abundance of scenes and a well-established bench-
mark. However, both camera images and labels are often-
times noisy, making it hard to generalize from ScanNet to
other datasets. ARKitScenes [1] shows the growing pos-
sibility to capture RGB-D trajectories at scale, and at the
same time illustrates the cost of semantic annotations, fea-
turing an incomplete list of bounding boxes.

To push the scale and accuracy of 3D semantic segmen-
tation datasets, we present LabelMaker3D. LabelMaker3D
automatically creates labels that are on the same level of ac-
curacy as the established ScanNet benchmark, but without
any human annotation. Further, we show that it can produce
better labels than the original ScanNet labels when using the
human annotations as an additional input.

The design of our method is motivated by two obser-
vations. The first observation is on recent advances in 2D
semantic segmentation, where a leap in training data scale
through combination of different tasks and datasets [30]
or visual-language models [16] has boosted generalization.
The second observation is in the field of neural radiance
fields, where [17, 24, 36] have shown that NeRFs can be
used to denoise semantic input labels and learn a multi-view
consistent semantic label field. We leverage these two ob-
servations and motivate an automatic labelling pipeline with
two main components at its heart. First, we leverage large
2D models, that combine the power of different tasks and
input modalities, in order to predict different hypothesis for
labels in 2D. These labels are aggregated using our consen-
sus voter in order to obtain a single 2D prediction for every
frame. Second, all 2D predictions are aggregated and made
consistent using a neural radiance field. This neural radi-
ance field can be used to render clean and consistent 2D
label maps. Alternatively, the labels can be aggregated and
mapped into 3D to obtain labeled pointclouds or meshes.

With a comparison to SOTA methods and datasets and an
extensive ablation study, we showcase that our method au-
tomatically generates labels of similar quality than human
annotators. We also demonstrate fully automatic labelling
for ARKitScenes, for which no dense labels exist to date.

In summary, our contributions are:
• A curated mapping between the indoor label sets NYU40,

ADE20k, ScanNet, Replica, and into the wordnet graph.
• A pipeline to automatically label RGB-D trajectories,

as well as corresponding 3D point clouds, that achieves
higher quality than the original labels of ScanNet.

• Generated labels in 3D meshes and 2D images for Scan-
Net [8] and ARKitScenes [1].

2. Related Work

Labelling in 2D. Cityscapes [7] is one of the most estab-
lished 2D semantic segmentation datasets. The authors re-

port an effort of more than 1.5h to annotate a single frame.
Similar frame-by-frame manual annotations were provided
in NYU Depth [25], ADE20k [38], or COCO-stuff [3].
While frame-by-frame annotations yield very high quality
segmentation masks, they are expensive to obtain. Although
the effort can be reduced through comfortable annotation
tools [2, 13], it cannot be avoided that a human inspects ev-
ery image and performs at least a couple of clicks.

Labelling in 3D. If scenes are annotated in 3D, their anno-
tations can easily be rendered into any localized camera im-
age in the same scene, therefore potentially reducing label-
ing effort. This approach was followed in Replica [26] and
ScanNet [8]. iLabel [37] pioneered to use NeRFs for this
type of rendering, additionally showing that NeRFs have
an intrinsic capability to segment whole objects along tex-
ture boundaries from a few clicks. Similarly, [11, 34] also
reduce the manual labelling effort to a few positive and neg-
ative clicks per object. Matterport [4] consists of large la-
beled 3D scans, but does not have corresponding 2D images
and therefore can only be used for 3D methods.

Pretrained Models. It is a well-established approach in la-
belling to label parts of a dataset, train a model on that part,
and use its predictions to bootstrap labels for the rest of the
data. More recently, models pretrained on large amounts of
data have been introduced to help labelling completely un-
seen datasets. SAM [10] showed impressive results of seg-
menting objects in images from close to zero clicks where
only labels have to be assigned. The seconds step can even
be bootstrapped through CLIP [21]. CLIP2Scene [5] takes
a similar approach in 3D to train a pointcloud classifier on
previously unlabeled data.

3. Method

We briefly discuss the relabelling of ScanNet scenes. Then,
we discuss the translation between prediction spaces. Fi-
nally, we present our automatic labelling pipeline.

3.1. Relabeling ScanNet Scenes

To be able to evaluate the quality of LabelMaker3D, we
want to compare it against existing human annotations. We
choose the ScanNet dataset because its scale has a large po-
tential for automatic processing. To be able to evaluate the
quality of the existing labels and compare them with Label-
Maker3D, we create high-quality annotations for a selection
of scenes.

The original ScanNet [8] labels were created using free
text user prompts. They consequently have duplicates or
are ill-defined. This reflects the open-world approach of
Dai et al. [8], but contradicts the use as benchmark labels,
for which they them map to other class sets. As a set of an-
notation classes, we therefore did not directly annotate with
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ScanNet classes, but use wordnet [18] synkeys1. In particu-
lar, we start from the mapping that ScanNet defined between
their labels and wordnet and take the categories that occur
at least three times in the dataset. This yields an initial list
of 199 categories, already resolving many ambiguities. We
then check the definitions of all of these categories in the
wordnet database and correct the initial mapping, as well as
merged categories that are still too ambiguous by their defi-
nitions in wordnet (e.g. rug.n.01 “rug, carpet, carpeting;
floor covering consisting of a piece of thick heavy fabric
(usually with nap or pile)” and mat.n.01 “a thick flat pad
used as a floor covering” ). The result are 186 categories
that come with a text definition, a defined hierarchy, and all
possible synonyms that describe the category.

We then annotate our selected ScanNet scenes with these
186 categories based on their wordnet definitions. We
use [11] to annotate the fine meshes of the scenes with a
minimum number of necessary clicks. Only the authors of
this paper provided annotations, and each annotation was
cross-checked by at least one other author. In case of doubt,
individual objects were discussed together. On average, la-
beling of a scene took 5 hours.

3.2. Translation between Prediction Spaces

We employ different predictors that were trained on dif-
ferent data sets with different numbers and definitions of
classes. This requires translating between different predic-
tion spaces. We therefore build a mapping between the class
definitions of NYU40, ADE20k, ScanNet20, ScanNet200,
Replica, and the WordNet semantic language graph.

In this effort, we build on top of previous work, as the
original ScanNet [8] already defined a mapping between
ScanNet classes, NYU40 classes, Eigen13 classes, and
wordnet synkeys [18]. Further, Lambert et al. [14] curated
mappings between the taxonomies of semantic segmen-
tation datasets, out of which mappings between NYU40,
SUNRGBD, and ADE20k are most relevant for indoor per-
ception. We took the union of both works as initial map-
ping, but found that many corrections were needed espe-
cially with regard to wordnet synkeys and many ADE20k
were missing because [14] only considered 20 NYU cate-
gories. We then further added mappings to the Replica cat-
egories for the purpose of evaluation, since Replica is one
of the most accurately annotated indoor semantic datasets.

When mapping between two class spaces, for any class
in the source space there are three cases in the target space:
a) there is no corresponding class in the target space, b)
there is exactly one corresponding class in the target space.
This may be an exact match, or a class to which multiple
class ids from the source space are matched (e.g., the source

1Wordnet is a dictionary and synkeys are the names of its entries. I.e., a
set of synonymous words has 1 synkey, but a word with different meanings
as one synkey per definition.

space may distinguish between office chair, chair, and stool
but the target space just has one general chair class), c) there
are multiple corresponding classes in the target space be-
cause the target space has a higher resolution than the source
space (e.g., a general chair class in the source space can
be split up in the target space to distinguish between office
chair, chair, or stool).

For (a) and (b), mappings are straightforward. We re-
solve (c) dependent on the use cases:
• Evaluating a class with multiple correspondences. A la-

bel of any of the correspondences is treated as a true pos-
itive. If none of the correspondences is the true class, all
of them are counted as false positives.

• Computing model consensus. Predictions in the source
space vote for all possible correspondences in the target
space. The ambiguity between the possible correspon-
dences is usually resolved through an additional predictor
with a prediction space of higher resolution. If no resolu-
tion is achieved, we pick the first of the possible classes.

3.3. Base Models

We employ an ensemble of strong base models, each state-
of-the-art in their respective task and data characteristic:

InternImage [30] is a supervised 2D RGB-only semantic
segmentation model that at the time of writing has state-of-
the-art performance on the Cityscapes and ADE20k bench-
marks. It achieves this by performing large-scale joined pre-
training on most available visual classification datasets. We
use the ADE20k fine-tuned variant.

OVSeg [15] is an open-vocabulary semantic segmenta-
tion model based on CLIP [21], a visual-language represen-
tation model. OVSeg segments images by assigning region
proposals to a set of given prompts and is therefore not lim-
ited to a fixed set of classes. In particular, we added such
an open-vocabulary segmentation model not because they
achieve the best performance on a given task but because of
their generalization ability. We generate prompts from our
set of wordnet synkeys by averaging over language prompts
such as “A in a room.”, but also using all possible syn-
onyms according to wordnet.

CMX [35] is at the time of writing the state-of-the-art
2D semantic segmentation model for NYU Depth v2, a
RGB+Depth indoor dataset. Its predictions also take the
geometric cues from the depth into account.

Mask3D [23] is at the time of writing the state-of-the-art
3D instance segmentation model on ScanNet200 [22]. This
method operates on an accumulated pointcloud of a scene
instead of frames, therefore taking even better the geometry
into account. It is trained on ScanNet. We render the 3D
semantic instance predictions into the 2D training frames to
map them into the same space as all other base models.

The four semantic models produce classifications in four
different sets of classes. InternImage predicts 150 ADE20k
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Figure 2. Pipeline Overview. All components in blue boxes run
independently and in parallel.

classes, CMX predicts 40 NYU classes, Mask3D predicts
200 ScanNet classes, and our OVSeg prompts cover 186
wordnet classes. In addition to the semantic models, we use
OmniData [9] to complement the depth sensor.

3.4. Model Consensus

As illustrated in Fig. 2, we run all models of Sec. 3.3
individually on every frame and then, per frame, merge
their predictions together using the translation described in
Sec. 3.2. We further use left-right flipping as test time aug-
mentation, which means that each pixel receives votes for
possible classes from:
• the standard RGB image and it’s flipped version for the

2D segmentation models InternImage, CMX, and OVSeg
• 2 votes (to equalize the test-time augmentation of the

RGB frame) from the Mask3D prediction rendered into
the current frame

• in the variant where we also use available human annota-
tions, 5 votes from the original ScanNet labels

For every pixel, we choose the class with the maximum

number of votes. If no class has sufficient votes (parame-
terized as a threshold), we set the prediction to “unknown”
and it will have no loss in the 3D lifting.

3.5. 3D Lifting

By computing a consensus over a diverse set of 2D predic-
tors, we leverage the knowledge and scale of 2D semantic
segmentation datasets. However, the per-frame predictions
are noisy and often inconsistent, especially around image
boundaries. These inconsistencies can be mitigated and the
performance can even be improved, as previous work has
shown [17, 24], by lifting the 2D predictions into 3D.

Therefore, we leverage the recent progress based on
NeRFs to generate multi-view consistent 2D semantic seg-
mentation labels in all frames. Based on the observation in
previous works [17, 24] that accurate geometry is impor-
tant to resolve inconsistencies between predictions of mul-
tiple frames instead of hallucinating geometry that would
explain semantic predictions, we train an implicit surface
model from sdfstudio [32] that has a more explicit surface
definition compared to a NeRF yielding improved geometry
compared to vanilla NeRF. Thus, we add a semantic head to
the Neus-Acc model, train it on all views with losses from
RGB reconstruction, sensor depth, monocular normal esti-
mation, and our semantic consensus. Finally, we render the
optimized semantics back into all camera frames.

To generate consistent 3D semantic segmentation labels,
we follow an established and more direct approach. Given a
pointcloud of the scene, we project the pointcloud into each
consensus frame to find corresponding pixels and then take
a majority vote over all pixels corresponding to a point.

4. Experiments

4.1. Implementation Details

For the 2D models, we use the corresponding available
open-source code and adjust it to our pipeline. As described
in Sec. 3.2, we generate votes from each 2D model into
a common label space. We choose our defined 186 class
wordnet label space as output. We choose the label with
highest votes, but require a minimum of 3 out of 13 (with
ScanNet annotations) resp. 4 out of 8 (automatic pipeline)
votes. For 3D optimization, we build on top of SDFStu-
dio [32], specifically the Neus-Acc [29] model, and add a
semantic head and semantic rendering similar to [36].

4.2. Datasets

We run our proposed method on three different datasets to
show its performance and validate our design choices.

ScanNet [8] We randomly select 5 scenes from the Scan-
Net that cover all frequent room types. We carefully anno-
tate high-resolution meshes of the scenes using [11] as de-
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evaluation class set NYU (40 classes) wordnet (186 classes) NYU (40 classes) wordnet (186 classes)
metric mIoU mAcc tAcc mIoU mAcc tAcc mIoU mAcc tAcc mIoU mAcc tAcc

ScanNet labels [8] 47.7 56.2 69.2 38.1 46.3 69.7 40.1 48.2 68.6 17.7 21.3 70.6
SemanticNerf* [36] 45.2 56.6 69.3 32.9 43.7 71.2 36.7 47.1 68.4 14.8 19.3 71.0

LabelMaker3D w/o ScanNet (automatic labels) 50.7 64.0 75.3 33.5 43.5 72.3 41.3 47.3 71.2 15.7 18.1 71.5
LabelMaker3D (Ours) 53.4 65.0 77.5 39.1 49.3 77.2 44.1 53.4 76.1 18.2 22.0 76.7

Table 1. Comparison of the label quality of the ScanNet labels, LabelMaker3D without any human input, and LabelMaker3D taking
the ScanNet annotations as additional input. The results are measured over 5 scenes from ScanNet against newly annotated high-quality
ground truth. Based on our translation of prediction spaces, we measure metrics over the medium-tail NYU40 set of categories and our full
long-tail ground truth categories. For NYU40 classes, LabelMaker3D is capable of producing labels of higher quality than the ScanNet
human annotations, without any human input. For more long-tail categories, the automatic mode does not reach the quality of ScanNet,
but LabelMaker3D is able to considerably improve human annotations.

scribed in Sec. 3.1 in order to have a complete and accurate
groundtruth to evaluate against.

Replica [26] We also evaluate our method on the Replica
dataset. This is a semi-synthetic dataset, captured as a high
accuracy mesh from real environments and then rendered
into trajectories in [36]. We select the 3 ‘room’ scenes and
evaluate against the given annotation.

ARKitScenes [1] To showcase the automatic labelling
pipeline on an existing dataset, we run it on selected scenes
of the ARKitScenes dataset, where only sparse bounding
box labels are available up to date. ARKit Scenes consists
of trajectories captured with consumer smartphones which
are registered to a professional 3D scanner.

4.3. Baselines

We mainly compare LabelMaker3D to the existing manu-
ally created annotations in ScanNet [8]. As an additional
baseline, we report the result of fitting and rendering the
ScanNet annotations with our adapted SemanticNeRF [36].

ScanNet [8]. For this baseline, we measure the quality of
the annotations in ScanNet. To this end, we take the raw
ScanNet labels and map them into our labelspace defined
by wordnet. The mapping from ScanNet IDs to wordnet
synkeys is to a large extent already provided in [8].

SemanticNeRF [36]. This baseline is inspired by [36] and
adapted to our pipeline by integrating the semantic head
into SDFStudio. Then, we run this version of Semantic-
NeRF on the ScanNet 2D semantic labels. Thus, we can
measure the effect of multi-view aggregation and optimiza-
tion on the groundtruth ScanNet labels. The hypothesised
effect is that through the extra RGB and geometry informa-
tion provided to the NeRF, segmentation boundaries may be
smoother than those of the ScanNet ‘supervoxels’.

4.4. Comparison to State-of-the-Art

In Tab. 1, we compare LabelMaker3D to the state-of-the-
art baselines ScanNet and SemanticNeRF. We report mean
intersection-over-union (mIoU), mean accuracy (mAcc), as
well as total accuracy (tAcc). We evaluate the methods in
2D by comparing the renderings or labeled frames with ren-
derings from the ground-truth 3D mesh and in 3D by map-
ping the 2D renderings onto the corresponding vertices in
the 3D ground-truth mesh. Further, we measure the metrics
over two different label sets. The NYU40 label set [25] con-
sists of 40 semantic classes representing the common indoor
classes in the short tail of the label distribution. The word-
net label set consists of 186 classes, therefore measuring
performance also over the long tail of the label distribution.

We show that our proposed pipeline generates better la-
bels than human-annotated ScanNet labels and their lifted
version through SemanticNeRF [36]. Particularly, on the
short tail of the distribution (NYU label set), our pipeline
significantly improves over the human annotated labels.
This is due to more accurate object boundaries as well as
more consistent and complete labels. For the long tail of
the label distribution, our method also outperforms all ex-
isting baselines indicating that different 2D expert votes and
3D aggregation boosts the quality of the annotated labels.
Finally, we show that our fully automatic pipeline outper-
forms human annotations on NYU40 classes, highlighting
the potential of LabelMaker3D to generate labels at scale.

Qualitative comparison with ScanNet [8] In Fig. 4, we
compare qualitative results for ScanNet [8] with Label-
Maker3D, and our groundtruth. To this end, we mapped the
2D renderings onto the high-resolution ground-truth mesh
by projecting the mesh vertices into all labels using a vis-
ibility check. One can see that our pipeline produces con-
sistently more complete and correct labels than the human
annotations provided by ScanNet [8]. E.g., our method con-
sistently labels the kitchen countertop, the mats in the bath-
room, and even the folded chair leaned against the desk.
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RGB ScanNet label LabelMaker3D LabelMaker3D - NYU40 Ground-truth

Figure 3. LabelMaker3D generates more accurate and more complete labels compared to the labels annotated by humans and provided by
ScanNet. Particularly, unlabeled sections in ScanNet are correctly filled in and many wrong annotations such as missing rogs and pictures
are corrected. The output labels can then be projected into differnet label spaces, such as our wordnet space or the NYU40 categories.

ScanNet (186 classes) Replica (150 classes)

mIoU mAcc tAcc mIoU mAcc tAcc

OVSeg 15.3 24.4 43.7 20.7 26.5 69.4
InternImage 30.8 43.5 59.4 38.3 47.7 84.6
CMX 28.2 41.0 54.2 17.0 38.0 84.6
Mask3D 33.7 40.2 38.5 22.6 27.9 30.4
Consensus 38.9 48.3 77.0 39.1 46.2 84.3
LabelMaker3D (ours) 39.1 49.3 77.2 42.1 51.0 86.7

Table 2. Ablation of all base models in LabelMaker3D on our 5
labelled ScanNet [8] scenes and Replica [26]. InternImage is the
strongest single base model, but the fusion with other predictions
and 3D lifting increases the accuracy considerably beyond any of
the state-of-the-art single models.

ScanNet Label Quality Because our experiments require
new high-accuracy annotations of ScanNet scenes, we are
able to estimate the quality of the default ScanNet labels. As

Tab. 1 shows, but also any human who inspects the ScanNet
labels knows, these are not perfect. We argue in Sec. 3.1
that this reflects the open-world approach of the dataset and
annotation workflow, where – exactly as in any real appli-
cation – semantics are ambiguous and not always clearly
defined. We should also point out that even the detailed an-
notations we provide are not fully perfect. However, given
the background that the ScanNet labels are also used as a
benchmark to compare accuracy of semantic classifiers, our
results indicate that a perfect prediction would reach accu-
racy values much lower than 100%. If two methods achieve
higher mIoU on ScanNet than the ScanNet labels them-
selves, it is not possible to draw a clear conclusion about
which method is better. This highlights the usefulness of
improving the quality of the labels in datasets where some
labels already exist.
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Scannet LabelMaker3D (Ours) Groundtruth

Figure 4. Dense 3D labels for ScanNetv2 [8]. We generate more consistent labels compared to human annotators and preserve rare
classes (e.g., swivel chair in front of the desk). Further, the labels are more complete (e.g., wall in bathroom) and we can capture all object
in the scene (e.g., dustpan in bathroom).

4.5. Ablation Study

Does consensus voting make the model better? Tab. 2
shows the evaluation on the standard metrics (mIoU, mAcc,
tAcc) in 2D for the ScanNet and the Replica datasets. We
demonstrate that aggregating individual 2D predictions with
our consensus voting mechanism improves upon the indi-
vidual 2D models. Further, we also show that lifting the 2D
consensus into 3D using our optimization pipeline further
improves the results compared to the individual 2D models.

Which model is the most important? Tab. 2 shows that
the performance of models differs noticeably. Compared to

the others, InternImage and Mask3D have the strongest pos-
itive impact on the segmentation quality. Additionally and
unsurprisingly, Tab. 1 shows that using ScanNet [8] labels
as additional votes further improves performance.

Importance of 3D Lifting? We show in Tab. 2 the effect
of 3D lifting to aggregate semantic labels and make them
multi-view consistent. We compare LabelMaker3D with
the aggregated consensus, as well as with individual mod-
els,and compute the 2D metrics on ScanNet and Replica.
One can see that the 3D lifting significantly improves the
performance by at least +1 mIoU.
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Figure 5. Automatic dense labelling of ARKitScenes. We demonstrate the applicability to label RGB-D datasets that do not have dense
labels available. Compared to state-of-the-art Mask3D [23], we generate dense annotations for all classes in the scene. Further, we segment
on a higher level of detail (see picture and books in bookshelf, or objects on the cabinet/nightstand). Thus, our labelling pipeline can readily
be used on non-label dataset to provide training data for segmentation methods.

4.6. Experiments on ARKitScenes

To demonstrate the applicability of our labelling pipeline
to new datasets, for which no dense labels exist, we run
our pipeline on a set of scenes from the ARKitScenes [1]
dataset. To this end, we process the smartphone trajectories
using the low resolution depth maps as sensor depth and
the corresponding VGA-resolution images as RGB input.
We established these correspondences by synchronizing the
depth and RGB timestamps. In Fig. 5, we show qualita-
tive results for 2 scenes of the data set. One can see that
the produced labels are more complete and accurate than
for Mask3D, a state-of-the-art 3D instance segmentation
method. Thus, we demonstrate the feasibility of automat-
ically labeling huge datasets with zero human intervention.

5. Limitations

LabelMaker3D is still limited to a fixed set of classes. Ex-
tending it to output language embeddings instead of classes
would make it more flexible and potentially help to resolve
ambiguities. The 3D lifting with SDFStudio has numerous
hyper-parameters, and this work possibly did not yet find
the optimal settings. In terms of accuracy, the pipeline can

be further profit from newly developed models as research
progresses, which will improve the output quality. An in-
teresting next step would be to implement a feedback loop
where LabelMaker3D is used to produce a vast amount of
automatically labeled training data, on which an additional
model is trained as a distillation of the model zoo.

6. Conclusion
We present a fully automatic labeling pipeline that generates
semantic annotations of similar quality to human annota-
tions, with zero manual human labeling effort. The method
also improves the accuracy and consistency of existing an-
notations. We quantitatively validate the performance of our
pipeline on the ScanNet and Replica datasets. On Scan-
Net, it outperforms the existing human annotations, and on
Replica it improves over all baseline methods. Finally, we
showcase the applicability to large-scale 3D datasets and la-
bel images and point clouds of ARKitScenes.
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